Overview and Welcome

- Welcome to UMBC!
- Setting the context: Why are we here?
- Challenges in Computer Science Education
 (and what we’re trying to do about it...)
 - Broadening the classroom view of CS
 - Broadening the diversity of CS students
 - Broadening the pool of qualified CS teachers
 - Broadening access to CS education through curricular reform
- Overview of mini-summit
Welcome to UMBC!
UMBC Team

- Dr. Marie desJardins (Professor of Computer Science)
 - Maryland native (Wilde Lake High School ‘81)
 - Artificial intelligence researcher
 - 11 years of teaching and mentoring at UMBC

- Dr. Susan Martin (Associate Director, Center for Women in Technology)
 - Ed.D. in Higher Education administration
 - Nearly 20 years of higher education experience (counseling, advising, and program coordination)

- Dr. Penny Rheingans (Professor of CS; CWIT Director)
 - Graphics and visualization researcher
 - 14 years of teaching and mentoring at UMBC
Setting the Context
CS Education: A National Crisis

- We need many trained computer scientists
 - There will be more new jobs in computing than in all other areas of STEM combined

- We are not producing enough computer scientists
 - Enrollment in computing majors dropped dramatically in the 2000s
 - Recently, enrollments have increased, but not nearly enough

- Our pool of computer scientists is not sufficiently diverse
 - Women, African-Americans, and other ethnic minorities choose CS at a much lower rate than white males

- We don’t have enough highly qualified K-12 CS teachers

- We don’t have a strong K-12 CS curriculum
Challenges in CS Education
CS is Not Just Programming and Video Games!

- Stereotypical view of CS:
 - CS is mostly about programming
 - The part that isn’t about programming is about video games and hacking
 - The typical computer scientist is an asocial, nerdy, young white male who likes to play video games and works all alone in a cubicle all day
 - CS isn’t a good career for someone who wants to make a difference in people’s lives
Computer Science is About...

- How computers are built, programmed, and used to solve problems
 - **Hardware**: Digital logic, representing data, system architecture
 - **Systems**: Operating systems and networks
 - **Theory**: Algorithms, computation, complexity
 - **Software**: Programming languages, compilers, databases
 - **Applications**: Artificial intelligence, graphics, simulation, bioinformatics, health informatics, visualization,...
 - **Social issues**: Ethics, privacy, environmental impact, patent/copyright issues, usability, accessibility
Interdisciplinary Diversity of CS

- CS is inherently mathematical
 - We reason about processes and quantities (discrete mathematics, statistics, automata theory)

- CS is directly related to engineering
 - We build our computing methods on top of hardware platforms (electrical engineering, materials science, communications engineering, photonics/optics, mechanical engineering/robotics)

- CS connects to the visual arts
 - Interfaces require human understandability (aesthetics, graphic design, perceptual modeling, kinesthetics)
Interdisciplinary Diversity of CS

- CS applications often help to solve and model scientific problems (biology, chemistry, medicine, physics, astronomy)
- Building CS systems requires understanding human behavior (psychology, sociology, computational economics, linguistics)
- Computer science lies at the boundary between mathematics, science, and engineering, and helps us to understand, interact with, and control the world around us
Computational Thinking: A New Perspective

- National conversation surrounding the teaching and “perception” of computing
- Move away from focus on programming, keyboarding, and narrow technical skills
- Move towards a focus on the broad and important themes of computer science:
 - “Computational Thinking”
 - New AP CS Principles course (CS4HS session)

- Related efforts at UMBC:
 - CMSC 100 (intro for non-majors, aligned with CS Principles)
 - “Computational Thinking 101” (design-based intro course for computing majors, funded by NSF’s Transforming Undergraduate Education in STEM program)
Lack of Gender Diversity in CS*

- In 2008, women earned:
 - 57% of all Bachelor's degrees
 - 61% of Master’s degrees
 - 51% of Doctoral degrees

- But in 2008, women earned:
 - 12% of Bachelor's degrees in CS (the lowest percentage ever recorded)
 - 26% of MS degrees in CS
 - 21% of PhD degrees in CS

- **Women are underrepresented in CS by a factor of more than 2 at the grad level, and by a factor of more than 4 at the undergrad level!**

- **Related efforts at UMBC:**
 - CWIT Scholarship Program
 - CWIT Affiliates Program

* Statistics for CS, CE, and IS combined
Source: CRA Taulbee Survey
Lack of Racial Diversity in CS

- In 2008, of Bachelor's degrees in CS:
 - 4.9% went to African-Americans (9.8% of all Bachelor’s)
 - 6.8% to Hispanics (7.9% of all Bachelor’s)

- In 2008, of Master’s degrees in CS:
 - 2.7% went to African-Americans (10% of all Master’s)
 - 2.4% went to Hispanics (5.9% of all Master’s)

- In 2008, of PhD degrees in CS:
 - 1.6% went to African-Americans (6.1% of all PhDs)
 - 1% to Hispanics (3.6% of all PhDs)

- **Minorities are underrepresented by a factor of 4 at the grad level**
 - *(CS4HS session on diversity)*

- **Related efforts at UMBC:**
 - Meyerhoff Scholarship Program

Source: CRA Taulbee Survey
Challenges in Teacher Preparation

- In most states (including Maryland!!):
 - Certification requirements are unclear
 - Current certifications do not meet the needs of the discipline
 - Teachers without CS certification are often asked to teach CS classes (often due to a lack of certified/qualified teachers)
 - There is inadequate in-service professional development to keep teachers abreast of new trends and knowledge

- Related efforts at UMBC:
 - CS4HS summer workshops
 - Proposed BS/MAT program would lead to CS certification, optionally with dual certification in mathematics
 - Planned larger professional development summer program to be submitted to NSF’s CE21 program
Challenges in K-12 Curriculum

- In most states (including Maryland!):
 - Very few of the CSTA-identified K-12 CS standards are part of the standard curriculum*
 - Computer science classes are not required for graduation, and in most cases don’t count towards any graduation requirement
 - Many schools don’t offer computing courses beyond the level of keyboarding schools, and even fewer offer college preparatory CS courses

- Related efforts at UMBC:
 - NSF-funded “CE21: Maryland” to gather data and build community to improve CS education in Maryland

* CSTA data on Maryland standards: 31 out of 35 Level I standards; 3 out of 10 Level II standards; 1 out of 10 Level III standards.
CS4HS/Mini-Summit Overview

Monday sessions:
- Computing Education for the 21st Century (challenges and directions)
- AP Computer Science Principles
- Hands-on session: Finch Robots
- Dinner with Industry

Tuesday sessions:
- Cyber Security
- Hands-on session: Scratch Programming
- Strategies for Increasing Diversity
- Hands-on session: Mobile App Development
CS4HS/Mini-Summit Overview (cont.)

- **Wednesday sessions:**
 - Presentations and wrap-up
 - CS4HS Recap (for minisummit attendees)
 - Joint keynote: Jan Cuny, NSF Program Director
 - CSTA Community Meeting and Social Lunch

- **Wednesday minisummit:**
 - Session 1: Snapshot of High School CS in Maryland
 - Session 2: Sharing Best CS Education Practices
 - Session 3: Planning the Spring 2013 CE21 Summit